Artificial intelligence : A Textbook / Charu C. Aggarwal
Material type:
- 9783030723569
- 978303023576
- Q334 .S3 2021
Item type | Current library | Call number | Copy number | Status | Barcode | |
---|---|---|---|---|---|---|
![]() |
Fayza Aboulnaga Central Library | مكتبة فايزة أبو النجا المركزية بالحرم الجامعي | Q334 .S3 2021 (Browse shelf(Opens below)) | C. 1 | Available | 10003543 |
Browsing Fayza Aboulnaga Central Library | مكتبة فايزة أبو النجا المركزية بالحرم الجامعي shelves Close shelf browser (Hides shelf browser)
Q327 .D83 2001 Pattern Classification / | Q327 .S76 2004 Computer Manual In MATLAB To Accompany Pattern Classification, Second Edition / | Q334 .S3 2020 Artificial Intelligence : 101 Things You Must Know Today About Our Future / | Q334 .S3 2021 Artificial intelligence : A Textbook / | Q335 D83 2021 An Intuitive Exploration of Artificial Intelligence : Theory and Applications of Deep Learning / | Q335 .E28 2015 Evolutionary Humanoid Robotics / | Q335 .G46 2021 Artificial Intelligence Simplified : Understanding Basic Concepts / |
Include Bibliographic references and Index
1. Linear Equations 1.1 Introduction to Linear Systems 1.2 Matrices, Vectors, and Gauss-Jordan Elimination 1.3 On the Solutions of Linear Systems; Matrix Algebra 2. Linear Transformations 2.1 Introduction to Linear Transformations and Their Inverses 2.2 Linear Transformations in Geometry 2.3 Matrix Products 2.4 The Inverse of a Linear Transformation 3. Subspaces of Rn and Their Dimensions 3.1 Image and Kernel of a Linear Transformation 3.2 Subspace of Rn; Bases and Linear Independence 3.3 The Dimension of a Subspace of Rn 3.4 Coordinates 4. Linear Spaces 4.1 Introduction to Linear Spaces 4.2 Linear Transformations and Isomorphisms 4.3 The Matrix of a Linear Transformation 5. Orthogonality and Least Squares 5.1 Orthogonal Projections and Orthonormal Bases 5.2 Gram-Schmidt Process and QR Factorization 5.3 Orthogonal Transformations and Orthogonal Matrices 5.4 Least Squares and Data Fitting 5.5 Inner Product Spaces 6. Determinants 6.1 Introduction to Determinants 6.2 Properties of the Determinant 6.3 Geometrical Interpretations of the Determinant; Cramer's Rule.. 7. Eigenvalues and Eigenvectors 7.1 Diagonalization 7.2 Finding the Eigenvalues of a Matrix 7.3 Finding the Eigenvectors of a Matrix 7.4 More on Dynamical Systems 7.5 Complex Eigenvalues 7.6 Stability 8. Symmetric Matrices and Quadratic Forms 8.1 Symmetric Matrices 8.2 Quadratic Forms 8.3 Singular Values Appendix A. Vectors Appendix B: Techniques of Proof Answers to Odd-numbered Exercises Subject Index Name Index
There are no comments on this title.