Welcome To E-JUST Library

Local cover image
Local cover image

Eco - Friendly and Sustainable Approach for Treating Dye - Laden Wastewater Coupled to Bioenergy Production : A Thesis Submitted to the Graduate School of Energy Resources , Environment , Chemical , and Petrochemical Engineering : Egypt - Japan University of Science and Technology (E - JUST) : In Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Engineering / by Duku Simon Sebit Augustine ; Supervisor Committee Dr. Mahmoud Nasr - Environmental Engineering Department - Egypt - Japan - University of Science and Technology , Dr. Amal Abdelhaleem - Environmental Engineering Department - Egypt - Japan - University of Science and Technology , Prof. Shinichi Ookawara - Department of Chemical Science and Engineering - Tokyo Institute of Technology - Tokyo ; Examination Committee Prof. Mona Gamal Eldin Ibrahim - Environmental Engineering Department - Egypt - Japan - University of Science and Technology , Dr. Mahmoud Nasr - Environmental Engineering Department - Egypt - Japan University of Science and Technology Fabrication Technology Department - Advanced Technology and New Materials Research Institute , Dr. Rehab Mohamed Ali - (ATNMRI) - City of Scientific Research and Technological Applications (SRTA-City)

By: Contributor(s): Material type: TextTextLanguage: English Summary language: Arabic Publication details: Alexandria : Duku Simon Sebit Augustine 2024Description: 77 leaves : Illustrations (some color) ; 30 cmOther title:
  • نهج صديق للبيئة و مستدام لمعالجة مياه الصرف الصحي المحملة بالصباغة إلى جانب إنتاج الطاقة الحيوية : أطروحة مقدمة إلى كلية الدراسات العليا لموارد الطاقة و البيئة و الهندسة الكيميائية و البتروكيماوية : الجامعة المصرية اليابانية للعلوم و التكنولوجيا (E-JUST) استيفاء جزئي لمتطلبات درجة درجة الماجستير في العلوم في الهندسة البيئية / بواسطة دوكو سيمون سيبيت أوغسطين ; لجنة الاشراف على الرسالة د. محمود نصر - قسم الهندسة البيئية - الجامعة المصرية اليابانية للعلوم و التكنولوجيا , د. امال عبد الحليم - قسم الهندسة البيئية - الجامعة المصرية اليابانية للعلوم و التكنولوجيا , أ.د. شينيتشي أوكاوارا - العلوم و الهندسة، معهد طوكيو للتكنولوجيا - طوكيو ; لجنة المناقشة و الحكم على الرسالة أ.د. منى جمال الدين ابراهیم - قسم الهندسة البيئية - الجامعة المصرية اليابانية للعلوم و التكنولوجيا , د. محمود نصر - قسم الهندسة البيئية - الجامعة المصرية اليابانية للعلوم و التكنولوجيا , د. رحاب محمد علي (ATNMRI) - مدينة البحث العلمى و التطبيقات التكنولوجية (SRTA City) [Added title page title]
Issued also as a digital file (for more information please check our Digital Repository)Dissertation note: Thesis (M.Sc.) Master Egypt - Japan University of Science and Technology (E - JUST) - School of Energy Resources , Environment , Chemical , and Petrochemical Engineering - Environmental Engineering Department 2024 Summary: Potato peel is a tuber-based biomass produced in huge quantities worldwide , requiring an appropriate management strategy to meet the waste - to-wealth concept The conventional treatment of dye - laden wastewater generates large amounts of sludge with toxic compounds , necessitating sustainable management techniques This thesis addresses the management of potato peel for methylene blue (MB) adsorption and recycling for dual biogas and char production The thesis is broken down into three parts Part one involves the production of biochar from potato peel waste (PPBC) via pyrolysis at 600 °C for 2 h The chemical and physical properties , such as biochar yield , elemental composition , crystallography , surface area , and functional groups, were analyzed and discussed before and after adsorption The effectiveness of the synthesized PPBC was tested for MB removal from an aqueous solution The essential operating parameters were examined and optimized through experimental testing and modelling using Box-Behnken design (BBD) in a response surface approach The optimized time and adsorbent dosage were 55.2 min and 2.6 g/L, giving 81.88% removal at initial MB= 50 mg/L and pH= 9. A verification experiment was conducted under this optimized condition , showing a measured removal percent (R%) of 81.76%. This value complies with the R% predicted by the quadratic model The reusability and regeneration test revealed that PPBC could be used over three cycles without significant loss Part two involves the production of biogas from chicken droppings. The exhausted biochar was regenerated and supplemented to an anaerobic digester using a biochar: chicken droppings (CD) ratio of 1:4 (w/w) at 37 °C for 25 days Gompertz model was established using IBM SPSS Statistic 25 to analyze the cumulative methane production (CMP). The biochar/CD synergy exhibited a bio- CH4 yield of 159.6±10.5 mL/g CODinitial greater than the sole CD digester (as a control) by 32.4%, owing to biochar amendment in the digester Part 3 involves char production from the digestate to maintain a sustainable circular economy The anaerobic digestate was thermally treated at 500 °C for 60 min. The morphological, structural, and chemical properties of the digested char were examined using characterization techniques The generated biochar acquired a yield of 0.62 g/g sludge-cake, exhibiting a heterogenic surface and significant amounts of essential nutrients, which could be further utilized as an effective soil amendment in farmlands
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Copy number Status Barcode
Dissertations Dissertations Fayza Aboulnaga Central Library | مكتبة فايزة أبو النجا المركزية بالحرم الجامعي ENV MSc. 2024 08 (Browse shelf(Opens below)) C. 1 Not for loan 10014188

Includes a title page in Arabic

Thesis (M.Sc.) Master Egypt - Japan University of Science and Technology (E - JUST) - School of Energy Resources , Environment , Chemical , and Petrochemical Engineering - Environmental Engineering Department 2024

Potato peel is a tuber-based biomass produced in huge quantities worldwide , requiring an appropriate management strategy to meet the waste - to-wealth concept The conventional treatment of dye - laden wastewater generates large amounts of sludge with toxic compounds , necessitating sustainable management techniques This thesis addresses the management of potato peel for methylene blue (MB) adsorption and recycling for dual biogas and char production The thesis is broken down into three parts Part one involves the production of biochar from potato peel waste (PPBC) via pyrolysis at 600 °C for 2 h The chemical and physical properties , such as biochar yield , elemental composition , crystallography , surface area , and functional groups, were analyzed and discussed before and after adsorption The effectiveness of the synthesized PPBC was tested for MB removal from an aqueous solution The essential operating parameters were examined and optimized through experimental testing and modelling using Box-Behnken design (BBD) in a response surface approach The optimized time and adsorbent dosage were 55.2 min and 2.6 g/L, giving 81.88% removal at initial MB= 50 mg/L and pH= 9. A verification experiment was conducted under this optimized condition , showing a measured removal percent (R%) of 81.76%. This value complies with the R% predicted by the quadratic model The reusability and regeneration test revealed that PPBC could be used over three cycles without significant loss Part two involves the production of biogas from chicken droppings. The exhausted biochar was regenerated and supplemented to an anaerobic digester using a biochar: chicken droppings (CD) ratio of 1:4 (w/w) at 37 °C for 25 days Gompertz model was established using IBM SPSS Statistic 25 to analyze the cumulative methane production (CMP). The biochar/CD synergy exhibited a bio- CH4 yield of 159.6±10.5 mL/g CODinitial greater than the sole CD digester (as a control) by 32.4%, owing to biochar amendment in the digester Part 3 involves char production from the digestate to maintain a sustainable circular economy The anaerobic digestate was thermally treated at 500 °C for 60 min. The morphological, structural, and chemical properties of the digested char were examined using characterization techniques The generated biochar acquired a yield of 0.62 g/g sludge-cake, exhibiting a heterogenic surface and significant amounts of essential nutrients, which could be further utilized as an effective soil amendment in farmlands

Issued also as a digital file (for more information please check our Digital Repository)

(EECE) School of Energy Resources, Environmental, Chemical and Petrochemical Engineering (ENV) Environmental Engineering

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image

All Rights Reserved
Egypt-Japan University of Science and Technology (E-JUST) © 2024