000 | 07044cam a2200445 a 4500 | ||
---|---|---|---|
003 | EG-NbEJU | ||
005 | 20240610124754.0 | ||
008 | 190424s2011 maua bi 001 0 eng d | ||
010 | _a2010028053 | ||
016 | 7 |
_a015690249 _2Uk |
|
020 | _a9780262015356 (hardcover : alk. paper) | ||
020 | _a0262015358 (hardcover : alk. paper) | ||
035 | _a(OCoLC)ocn649700153 | ||
040 |
_aEG-NbEJU _cEG-NbEJU _dEG-NbEJU _beng |
||
041 | _aeng | ||
042 | _apcc | ||
050 | 0 | 0 |
_aTJ211.415 _b.S54 2011 |
100 | 1 | _aSiegwart , Roland | |
245 | 1 | 0 |
_aIntroduction to autonomous mobile robots / _cRoland Siegwart , Illah R. Nourbakhsh , and Davide Scaramuzza |
250 | _aSecond edition | ||
260 |
_a.Cambridge , Mass : _bMIT Press , _c2011 |
||
300 |
_axvi, 453 pages : _billustrations ; _c24 cm |
||
490 | 1 | _aIntelligent robotics and autonomous agents | |
504 | _aIncludes bibliographical references and index | ||
505 | 0 | 0 |
_gMachine generated contents note : _g1. _tIntroduction -- _g1.1. _tIntroduction -- _g1.2. _tAn Overview of the Book -- _g2. _tLocomotion -- _g2.1. _tIntroduction -- _g2.1.1. _tKey issues for locomotion -- _g2.2. _tLegged Mobile Robots -- _g2.2.1. _tLeg configurations and stability -- _g2.2.2. _tConsideration of dynamics -- _g2.2.3. _tExamples of legged robot locomotion -- _g2.3. _tWheeled Mobile Robots -- _g2.3.1. _tWheeled locomotion: The design space -- _g2.3.2. _tWheeled locomotion: Case studies -- _g2.4. _tAerial Mobile Robots -- _g2.4.1. _tIntroduction -- _g2.4.2. _tAircraft configurations -- _g2.4.3. _tState of the art in autonomous VTOL -- _g2.5. _tProblems -- _g3. _tMobile Robot Kinematics -- _g3.1. _tIntroduction -- _g3.2. _tKinematic Models and Constraints -- _g3.2.1. _tRepresenting robot position -- _g3.2.2. _tForward kinematic models -- _g3.2.3. _tWheel kinematic constraints -- _g3.2.4. _tRobot kinematic constraints -- _tExamples: Robot kinematic models and constraints |
505 | 0 | 0 |
_g3.3. _tMobile Robot Maneuverability -- _g3.3.1. _tDegree of mobility -- _g3.3.2. _tDegree of steerability -- _g3.3.3. _tRobot maneuverability -- _g3.4. _tMobile Robot Workspace -- _g3.4.1. _tDegrees of freedom -- _g3.4.2. _tHolonomic robots -- _g3.4.3. _tPath and trajectory considerations -- _g3.5. _tBeyond Basic Kinematics -- _g3.6. _tMotion Control (Kinematic Control) -- _g3.6.1. _tOpen loop control (trajectory-following) -- _g3.6.2. _tFeedback control -- _g3.7. _tProblems -- _g4. _tPerception -- _g4.1. _tSensors for Mobile Robots -- _g4.1.1. _tSensor classification -- _g4.1.2. _tCharacterizing sensor performance -- _g4.1.3. _tRepresenting uncertainty -- _g4.1.4. _tWheel/motor sensors -- _g4.1.5. _tHeading sensors -- _g4.1.6. _tAccelerometers -- _g4.1.7. _tInertial measurement unit (IMU) -- _g4.1.8. _tGround beacons -- _g4.1.9. _tActive ranging -- _g4.1.10. _tMotion/speed sensors -- _g4.1.11. _tVision sensors -- _g4.2. _tFundamentals of Computer Vision -- _g4.2.1. _tIntroduction -- _g4.2.2. _tThe digital camera -- _g4.2.3. _tImage formation -- _g4.2.4. _tOmnidirectional cameras |
505 | 0 | 0 |
_g4.2.5. _tStructure from stereo -- _g4.2.6. _tStructure from motion -- _g4.2.7. _tMotion and optical flow -- _g4.2.8. _tColor tracking -- _g4.3. _tFundamentals of Image Processing -- _g4.3.1. _tImage filtering -- _g4.3.2. _tEdge detection -- _g4.3.3. _tComputing image similarity -- _g4.4. _tFeature Extraction -- _g4.5. _tImage Feature Extraction: Interest Point Detectors -- _g4.5.1. _tIntroduction -- _g4.5.2. _tProperties of the ideal feature detector -- _g4.5.3. _tCorner detectors -- _g4.5.4. _tInvariance to photometric and geometric changes -- _g4.5.5. _tBlob detectors -- _g4.6. _tPlace Recognition -- _g4.6.1. _tIntroduction -- _g4.6.2. _tFrom bag of features to visual words -- _g4.6.3. _tEfficient location recognition by using an inverted file -- _g4.6.4. _tGeometric verification for robust place recognition -- _g4.6.5. _tApplications -- _g4.6.6. _tOther image representations for place recognition -- _g4.7. _tFeature Extraction Based on Range Data (Laser, Ultrasonic) -- _g4.7.1. _tLine fitting -- _g4.7.2. _tSix line-extraction algorithms |
505 | 0 | 0 |
_g4.7.3. _tRange histogram features -- _g4.7.4. _tExtracting other geometric features -- _g4.8. _tProblems -- _g5. _tMobile Robot Localization -- _g5.1. _tIntroduction -- _g5.2. _tThe Challenge of Localization: Noise and Aliasing -- _g5.2.1. _tSensor noise -- _g5.2.2. _tSensor aliasing -- _g5.2.3. _tEffector noise -- _g5.2.4. _tAn error model for odometric position estimation -- _g5.3. _tTo Localize or Not to Localize: Localization-Based Navigation Versus Programmed Solutions -- _g5.4. _tBelief Representation -- _g5.4.1. _tSingle-hypothesis belief -- _g5.4.2. _tMultiple-hypothesis belief -- _g5.5. _tMap Representation -- _g5.5.1. _tContinuous representations -- _g5.5.2. _tDecomposition strategies -- _g5.5.3. _tState of the art: Current challenges in map representation -- _g5.6. _tProbabilistic Map-Based Localization -- _g5.6.1. _tIntroduction -- _g5.6.2. _tThe robot localization problem -- _g5.6.3. _tBasic concepts of probability theory -- _g5.6.4. _tTerminology -- _g5.6.5. _tThe ingredients of probabilistic map-based localization |
505 | 0 | 0 |
_g5.6.6. _tClassification of localization problems -- _g5.6.7. _tMarkov localization -- _g5.6.8. _tKalman filter localization -- _g5.7. _tOther Examples of Localization Systems -- _g5.7.1. _tLandmark-based navigation -- _g5.7.2. _tGlobally unique localization -- _g5.7.3. _tPositioning beacon systems -- _g5.7.4. _tRoute-based localization -- _g5.8. _tAutonomous Map Building -- _g5.8.1. _tIntroduction -- _g5.8.2. _tSLAM: The simultaneous localization and mapping problem -- _g5.8.3. _tMathematical definition of SLAM -- _g5.8.4. _tExtended Kalman Filter (EKF) SLAM -- _g5.8.5. _tVisual SLAM with a single camera -- _g5.8.6. _tDiscussion on EKF SLAM -- _g5.8.7. _tGraph-based SLAM -- _g5.8.8. _tParticle filter SLAM -- _g5.8.9. _tOpen challenges in SLAM -- _g5.8.10. _tOpen source SLAM software and other resources -- _g5.9. _tProblems -- _g6. _tPlanning and Navigation -- _g6.1. _tIntroduction -- _g6.2. _tCompetences for Navigation: Planning and Reacting -- _g6.3. _tPath Planning -- _g6.3.1. _tGraph search -- _g6.3.2. _tPotential field path planning |
505 | 0 | 0 |
_g6.4. _tObstacle avoidance -- _g6.4.1. _tBug algorithm -- _g6.4.2. _tVector field histogram -- _g6.4.3. _tThe bubble band technique -- _g6.4.4. _tCurvature velocity techniques -- _g6.4.5. _tDynamic window approaches -- _g6.4.6. _tThe Schlegel approach to obstacle avoidance -- _g6.4.7. _tNearness diagram -- _g6.4.8. _tGradient method -- _g6.4.9. _tAdding dynamic constraints -- _g6.4.10. _tOther approaches -- _g6.4.11. _tOverview -- _g6.5. _tNavigation Architectures -- _g6.5.1. _tModularity for code reuse and sharing -- _g6.5.2. _tControl localization -- _g6.5.3. _tTechniques for decomposition -- _g6.5.4. _tCase studies: tiered robot architectures -- _g6.6. _tProblems -- _tBibliography -- _tBooks -- _tPapers -- _tReferenced Webpages. |
650 | 7 |
_aMobile robots _2LCSH |
|
650 | 7 |
_aAutonomous robots _2LCSH |
|
650 | 7 |
_aRobots , Industrial _2LCSH |
|
700 | 1 |
_aNourbakhsh , Illah Reza _d1970- _eContributing auther |
|
700 | 1 |
_aScaramuzza , Davide _eContributing auther |
|
901 | _aHaGeR | ||
902 | _aENG_03_ (2505) | ||
902 | _aENG_03_(2485) | ||
942 |
_2lcc _cBK |
||
999 |
_c3342 _d3342 |