000 | 14728cam a22004814a 4500 | ||
---|---|---|---|
003 | EG-NbEJU | ||
005 | 20240516114041.0 | ||
008 | 240502t2011 njua grb 001 0 eng | ||
010 | _a2010031085 | ||
020 | _a9780470408773 (hardback) | ||
020 | _a0470408774 (hardback) | ||
035 | _a(OCoLC)ocn655301749 | ||
040 |
_aEG-NbEJU _cEG-NbEJU _dEG-NbEJU _beng |
||
041 | _aeng | ||
042 | _apcc | ||
050 | 0 | 0 |
_aTK7876 _b.H66 2011 |
100 | 1 | _aHong , Jia-Sheng | |
245 | 1 | 0 |
_aMicrostrip filters for RF/microwave applications / _c[by] : Jia-Sheng Hong |
250 | _asecond edition | ||
260 |
_aHoboken , New Jersey : _bWiley , _c©2011 |
||
300 |
_axvi , 635 pages : _billustrations ; _c25 cm. |
||
490 | 1 | _aWiley series in microwave and optical engineering | |
504 | _aIncludes bibliographical references and index | ||
505 | 0 | 0 |
_gMachine generated contents note: _g1. _tIntroduction -- _g2. _tNetwork Analysis -- _g2.1. _tNetwork Variables -- _g2.2. _tScattering Parameters -- _g2.3. _tShort-Circuit Admittance Parameters -- _g2.4. _tOpen-Circuit Impedance Parameters -- _g2.5. _tABCD Parameters -- _g2.6. _tTransmission-Line Networks -- _g2.7. _tNetwork Connections -- _g2.8. _tNetwork Parameter Conversions -- _g2.9. _tSymmetrical Network Analysis -- _g2.10. _tMultiport Networks -- _g2.11. _tEquivalent and Dual Network -- _g2.12. _tMultimode Networks -- _tReferences -- _g3. _tBasic Concepts and Theories of Filters -- _g3.1. _tTransfer Functions -- _g3.1.1. _tGeneral Definitions -- _g3.1.2. _tPoles and Zeros on the Complex Plane -- _g3.1.3. _tButterworth (Maximally Flat) Response -- _g3.1.4. _tChebyshev Response -- _g3.1.5. _tElliptic Function Response -- _g3.1.6. _tGaussian (Maximally Flat Group-Delay) Response -- _g3.1.7. _tAll-Pass Response -- _g3.2. _tLowpass Prototype Filters and Elements -- _g3.2.1. _tButterworth Lowpass Prototype Filters -- _g3.2.2. _tChebyshev Lowpass Prototype Filters -- _g3.2.3. _tElliptic-Function Lowpass Prototype Filters |
505 | 0 | 0 |
_g3.2.4. _tGaussian Lowpass Prototype Filters -- _g3.2.5. _tAll-Pass Lowpass Prototype Filters -- _g3.3. _tFrequency and Element Transformations -- _g3.3.1. _tLowpass Transformation -- _g3.3.2. _tHighpass Transformation -- _g3.3.3. _tBandpass Transformation -- _g3.3.4. _tBandstop Transformation -- _g3.4. _tImmittance Inverters -- _g3.4.1. _tDefinition of Immittance, Impedance, and Admittance Inverters -- _g3.4.2. _tFilters with Immittance Inverters -- _g3.4.3. _tPractical Realization of Immittance Inverters -- _g3.5. _tRichards' Transformation and Kuroda Identities -- _g3.5.1. _tRichards' Transformation -- _g3.5.2. _tKuroda Identities -- _g3.5.3. _tCoupled-Line Equivalent Circuits -- _g3.6. _tDissipation and Unloaded Quality Factor -- _g3.6.1. _tUnloaded Quality Factors of Lossy Reactive Elements -- _g3.6.2. _tDissipation Effects on Lowpass and Highpass Filters -- _g3.6.3. _tDissipation Effects on Bandpass and Bandstop Filters -- _tReferences -- _g4. _tTransmission Lines and Components -- _g4.1. _tMicrostrip Lines -- _g4.1.1. _tMicrostrip Structure -- _g4.1.2. _tWaves In Microstrip -- _g4.1.3. _tQuasi-TEM Approximation -- _g4.1.4. _tEffective Dielectric Constant and Characteristic Impedance |
505 | 0 | 0 |
_g4.1.5. _tGuided Wavelength, Propagation Constant, Phase Velocity, and Electrical Length -- _g4.1.6. _tSynthesis of W / h -- _g4.1.7. _tEffect of Strip Thickness -- _g4.1.8. _tDispersion in Microstrip -- _g4.1.9. _tMicrostrip Losses -- _g4.1.10. _tEffect of Enclosure -- _g4.1.11. _tSurface Waves and Higher-Order Modes -- _g4.2. _tCoupled Lines -- _g4.2.1. _tEven- and Odd-Mode Capacitances -- _g4.2.2. _tEven- and Odd-Mode Characteristic Impedances and Effective Dielectric Constants -- _g4.2.3. _tMore Accurate Design Equations -- _g4.3. _tDiscontinuities and Components -- _g4.3.1. _tMicrostrip Discontinuities -- _g4.3.2. _tMicrostrip Components -- _g4.3.3. _tLoss Considerations for Microstrip Resonators -- _g4.4. _tOther Types of Microstrip Lines -- _g4.5. _tCoplanar Waveguide (CPW) -- _g4.6. _tSlotlines -- _tReferences -- _g5. _tLowpass and Bandpass Filters -- _g5.1. _tLowpass Filters -- _g5.1.1. _tStepped-Impedance L-C Ladder-Type Lowpass Filters -- _g5.1.2. _tL-C Ladder-Type of Lowpass Filters Using Open-Circuited Stubs -- _g5.1.3. _tSemilumped Lowpass Filters Having Finite-Frequency Attenuation Poles -- _g5.2. _tBandpass Filters -- _g5.2.1. _tEnd-Coupled Half-Wavelength Resonator Filters |
505 | 0 | 0 |
_g5.2.2. _tParallel-Coupled Half-Wavelength Resonator Filters -- _g5.2.3. _tHairpin-Line Bandpass Filters -- _g5.2.4. _tInterdigital Bandpass Filters -- _g5.2.5. _tCombline Filters -- _g5.2.6. _tPseudocombline Filters -- _g5.2.7. _tStub Bandpass Filters -- _tReferences -- _g6. _tHighpass and Bandstop Filters -- _g6.1. _tHighpass Filters -- _g6.1.1. _tQuasilumped Highpass Filters -- _g6.1.2. _tOptimum Distributed Highpass Filters -- _g6.2. _tBandstop Filters -- _g6.2.1. _tNarrow-Band Bandstop Filters -- _g6.2.2. _tBandstop Filters with Open-Circuited Stubs -- _g6.2.3. _tOptimum Bandstop Filters -- _g6.2.4. _tBandstop Filters for RF Chokes -- _tReferences -- _g7. _tCoupled-Resonator Circuits -- _g7.1. _tGeneral Coupling Matrix for Coupled-Resonator Filters -- _g7.1.1. _tLoop Equation Formulation -- _g7.1.2. _tNode Equation Formulation -- _g7.1.3. _tGeneral Coupling Matrix -- _g7.2. _tGeneral Theory of Couplings -- _g7.2.1. _tSynchronously Tuned Coupled-Resonator Circuits -- _g7.2.2. _tAsynchronously Tuned Coupled-Resonator Circuits -- _g7.3. _tGeneral Formulation for Extracting Coupling Coefficient k -- _g7.4. _tFormulation for Extracting External Quality Factor Qe -- _g7.4.1. _tSingly Loaded Resonator |
505 | 0 | 0 |
_g7.4.2. _tDoubly Loaded Resonator -- _g7.5. _tNumerical Examples -- _g7.5.1. _tExtracting k (Synchronous Tuning) -- _g7.5.2. _tExtracting k (Asynchronous Tuning) -- _g7.5.3. _tExtracting Qe -- _g7.6. _tGeneral Coupling Matrix Including Source and Load -- _tReferences -- _g8. _tCAD for Low-Cost and High-Volume Production -- _g8.1. _tComputer-Aided Design (CAD) Tools -- _g8.2. _tComputer-Aided Analysis (CAA) -- _g8.2.1. _tCircuit Analysis -- _g8.2.2. _tElectromagnetic Simulation -- _g8.3. _tFilter Synthesis by Optimization -- _g8.3.1. _tGeneral Description -- _g8.3.2. _tSynthesis of a Quasielliptic-Function Filter by Optimization -- _g8.3.3. _tSynthesis of an Asynchronously Tuned Filter by Optimization -- _g8.3.4. _tSynthesis of a UMTS Filter by Optimization -- _g8.4. _tCAD Examples -- _g8.4.1. _tExample One (Chebyshev Filter) -- _g8.4.2. _tExample Two (Cross-Coupled Filter) -- _tReferences -- _g9. _tAdvanced RF/Microwave Filters -- _g9.1. _tSelective Filters with a Single Pair of Transmission Zeros -- _g9.1.1. _tFilter Characteristics -- _g9.1.2. _tFilter Synthesis -- _g9.1.3. _tFilter Analysis -- _g9.1.4. _tMicrostrip Filter Realization -- _g9.2. _tCascaded Quadruplet (CQ) Filters |
505 | 0 | 0 |
_g9.2.1. _tMicrostrip CQ Filters -- _g9.2.2. _tDesign Example -- _g9.3. _tTrisection and Cascaded Trisection (CT) Filters -- _g9.3.1. _tCharacteristics of CT Filters -- _g9.3.2. _tTrisection Filters -- _g9.3.3. _tMicrostrip Trisection Filters -- _g9.3.4. _tMicrostrip CT Filters -- _g9.4. _tAdvanced Filters with Transmission-Line Inserted Inverters -- _g9.4.1. _tCharacteristics of Transmission-Line Inserted Inverters -- _g9.4.2. _tFiltering Characteristics with Transmission-Line Inserted Inverters -- _g9.4.3. _tGeneral Transmission-Line Filter -- _g9.5. _tLinear-Phase Filters -- _g9.5.1. _tPrototype of Linear-Phase Filter -- _g9.5.2. _tMicrostrip Linear-Phase Bandpass Filters -- _g9.6. _tExtracted Pole Filters -- _g9.6.1. _tExtracted Pole Synthesis Procedure -- _g9.6.2. _tSynthesis Example -- _g9.6.3. _tMicrostrip-Extracted Pole Bandpass Filters -- _g9.7. _tCanonical Filters -- _g9.7.1. _tGeneral Coupling Structure -- _g9.7.2. _tElliptic-Function/Selective Linear-Phase Canonical Filters -- _g9.8. _tMultiband Filters -- _g9.8.1. _tFilters Using Mixed Resonators -- _g9.8.2. _tFilters Using Dual-Band Resonators -- _g9.8.3. _tFilters Using Cross-Coupled Resonators -- _tReferences |
505 | 0 | 0 |
_g10. _tCompact Filters and Filter Miniaturization -- _g10.1. _tMiniature Open-Loop and Hairpin Resonator Filters -- _g10.2. _tSlow-Wave Resonator Filters -- _g10.2.1. _tCapacitively Loaded Transmission-Line Resonator -- _g10.2.2. _tEnd-Coupled Slow-Wave Resonators Filters -- _g10.2.3. _tSlow-Wave, Open-Loop Resonator Filters -- _g10.3. _tMiniature Dual-Mode Resonator Filters -- _g10.3.1. _tMicrostrip Dual-Mode Resonators -- _g10.3.2. _tMiniaturized Dual-Mode Resonator Filters -- _g10.3.3. _tDual-Mode Triangular-Patch Resonator Filters -- _g10.3.4. _tDual-Mode Open-Loop Filters -- _g10.4. _tLumped-Element Filters -- _g10.5. _tMiniature Filters Using High Dielectric-Constant Substrates -- _g10.6. _tMultilayer Filters -- _g10.6.1. _tAperture-Coupled Resonator Filters -- _g10.6.2. _tFilters with Defected Ground Structures -- _g10.6.3. _tSubstrate-Integrated Waveguide Filters -- _g10.6.4. _tLTCC and LCP Filters -- _tReferences -- _g11. _tSuperconducting Filters -- _g11.1. _tHigh-Temperature Superconducting (HTS) Materials -- _g11.1.1. _tTypical HTS Materials -- _g11.1.2. _tComplex Conductivity of Superconductors -- _g11.1.3. _tPenetration Depth of Superconductors |
505 | 0 | 0 |
_g11.1.4. _tSurface Impedance of Superconductors -- _g11.1.5. _tNonlinearity of Superconductors -- _g11.1.6. _tSubstrates for Superconductors -- _g11.2. _tHTS Filters for Mobile Communications -- _g11.2.1. _tHTS Filter with a Single Pair of Transmission Zeros -- _g11.2.2. _tHTS Filter with Two Pairs of Transmission Zeros -- _g11.2.3. _tHTS Filter with Group-Delay Equalization -- _g11.3. _tHTS Filters for Satellite Communications -- _g11.3.1. _tC-Band HTS Filter -- _g11.3.2. _tX-Band HTS Filter -- _g11.3.3. _tKa-Band HTS Filter -- _g11.4. _tHTS Filters for Radio Astronomy and Radar -- _g11.4.1. _tNarrowband Miniature HTS Filter at UHF Band -- _g11.4.2. _tWideband HTS Filter with Strong Coupling Resonators -- _g11.5. _tHigh-Power HTS Filters -- _g11.6. _tCryogenic Package -- _tReferences -- _g12. _tUltra-Wideband (UWB) Filters -- _g12.1. _tUWB Filters with Short-Circuited Stubs -- _g12.1.1. _tDesign of Stub UWB Filters -- _g12.1.2. _tStub UWB Filters with Improved Upper Stopband -- _g12.2. _tUWB-Coupled Resonator Filters -- _g12.2.1. _tInterdigital UWB Filters with Microstrip/CPW-Coupled Resonators -- _g12.2.2. _tBroadside-Coupled Slow-Wave Resonator UWB Filters |
505 | 0 | 0 |
_g12.2.3. _tUWB Filters Using Coupled Stepped-Impedance Resonators -- _g12.2.4. _tMultimode-Resonator UWB Filters -- _g12.3. _tQuasilumped Element UWB Filters -- _g12.3.1. _tSix-Pole Filter Design Example -- _g12.3.2. _tEight-Pole Filter Design Example -- _g12.4. _tUWB Filters Using Cascaded Miniature High- And Lowpass Filters -- _g12.4.1. _tMiniature Wideband Highpass Filter -- _g12.4.2. _tMiniature Lowpass Filter -- _g12.4.3. _tImplementation of UWB Bandpass Filter -- _g12.5. _tUWB Filters with Notch Band(s) -- _g12.5.1. _tUWB Filters with Embedded Band Notch Stubs -- _g12.5.2. _tNotch Implementation Using Interdigital Coupled Lines |
505 | 0 | 0 |
_aNote continued: _g12.5.3. _tUWB Filters with Notched Bands Using Vertically Coupled Resonators -- _tReferences -- _g13. _tTunable and Reconfigurable Filters -- _g13.1. _tTunable Combline Filters -- _g13.2. _tTunable Open-Loop Filters without Via-Hole Grounding -- _g13.3. _tReconfigurable Dual-Mode Bandpass Filters -- _g13.3.1. _tReconfigurable Dual-Mode Filter with Two dc Biases -- _g13.3.2. _tTunable Dual-Mode Filters Using a Single dc Bias -- _g13.3.3. _tTunable Four-Pole Dual-Mode Filter -- _g13.4. _tWideband Filters with Reconfigurable Bandwidth -- _g13.5. _tReconfigurable UWB Filters -- _g13.5.1. _tUWB Filter with Switchable Notch -- _g13.5.2. _tUWB Filter with Tunable Notch -- _g13.5.3. _tMiniature Reconfigurable UWB Filter -- _g13.6. _tRF MEMS Reconfigurable Filters -- _g13.6.1. _tMEMS and Micromachining -- _g13.6.2. _tReconfigurable Filters Using RF MEMS Switches -- _g13.7. _tPiezoelectric Transducer Tunable Filters -- _g13.8. _tFerroelectric Tunable Filters -- _g13.8.1. _tFerroelectric Materials -- _g13.8.2. _tFerroelectric Varactors -- _g13.8.3. _tFrequency Agile Filters Using Ferroelectrics -- _tReferences -- _tAppendix: Useful Constants and Data -- _gA.1. _tPhysical Constants -- _gA.2. _tConductivity of Metals at 25°C (298K) -- _gA.3. _tElectical Resistivity ρ in 10-8 Ωm of Metals -- _gA.4. _tProperties of Dielectric Substrates. |
520 |
_a"The first edition of "Microstrip Filters for RF/Microwave Applications" was published in 2001. Over the years the book has been well received and is used extensively in both academia and industry by microwave researchers and engineers. From its inception as a manuscript the book is almost 8 years old. While the fundamentals of filter circuits have not changed, further innovations in filter realizations and other applications have occurred with changes in the technology and use of new fabrication processes, such as the recent advances in RF MEMS and ferroelectric films for tunable filters; the use of liquid crystal polymer (LCP) substrates for multilayer circuits, as well as the new filters for dual-band, multi-band and ultra wideband (UWB) applications. Although the microstrip filter remains as the main transmission line medium for these new developments, there has been a new trend of using combined planar transmission line structures such as co-planar waveguide (CPW) and slotted ground structures for novel physical implementations beyond the single layer in order to achieve filter miniaturization and better performance. Also, over the years, practitioners have suggested topics that should be added for completeness, or deleted in some cases, as they were not very useful in practice. In view of the above, the authors are proposing a revised version of the "Microstrip Filters for RF/Microwave Applications" text and a slightly changed book title of "Planar Filters for RF/Microwave Applications" to reflect the aforementioned trends in the revised book"-- _cProvided by publisher. |
||
520 |
_a"The first edition of "Microstrip Filters for RF/Microwave Applications" was published in 2001. Over the years the book has been well received and is used extensively in both academia and industry by microwave researchers and engineers. From its inception as a manuscript the book is almost 8 years old. While the fundamentals of filter circuits have not changed, further innovations in filter realizations and other applications have occurred with changes in the technology and use of new fabrication processes, such as the recent advances in RF MEMS and ferroelectric films for tunable filters; the use of liquid crystal polymer (LCP) substrates for multilayer circuits, as well as the new filters for dual-band, multi-band and ultra wideband (UWB) applications"-- _cProvided by publisher. |
||
650 | 0 |
_aMicrowave circuits _2LCSH |
|
650 | 0 |
_aStrip transmission lines _2LCSH |
|
650 | 0 |
_aElectric filters _2LCSH |
|
830 | 0 | _aWiley series in microwave and optical engineering | |
901 | _asara sorur | ||
902 | _aENG_03_(1279) | ||
942 |
_2lcc _cBK |
||
999 |
_c3614 _d3614 |