000 01674nam a2200253 4500
003 EG-NbEJU
005 20241201113133.0
008 240627b2023 ua a | m||| 00| 0 eng d
040 _aEG-NbEJU
_beng
_cEG-NbEJU
_dEG-NbEJU
041 _aeng
_bara
100 1 _aMahmoud , Mahmoud Ashraf Mohamed
245 1 2 _aA Proposed Hybrid Deep Learning - Based Cognitive Digital Twin for Enhancing Supply Chain Resilience :
_bA Thesis Submitted to the Graduate School of Innovative Design Engineering : Egypt - Japan University of Science and Technology (E - JUST) : In Partial Fulfilment of the Requirements for the Degree of Master of Science in Industrial Engineering and Systems Management /
_cby Mahmoud Ashraf Mohamed Mahmoud
246 1 5 _aمقترح لتوأم رقمي إدراكي قائم على التعلم العميق الهجين لتعزيز مرونة سلسلة الإمداد /
_bمقدمة من محمود أشرف محمد محمود للحصول على درجة ماجستير العلوم في الهندسة الصناعية و إدارة النظم
260 _aAlexandria :
_bMahmoud Ashraf Mohamed Mahmoud
_c2023
300 _aleaves 87 :
_b(illustrations (some color ;
_c30 cm
500 _aIncludes a title page in Arabic
502 _aThesis (M.Sc.)
_bMaster
_cEgypt - Japan University of Science and Technology (E-JUST) - School of Innovative Design Engineering - Industrial Engineering and Systems Management Department
_d2023
520 _a.
530 _aIssued also as a digital file (for more information please check our Digital Repository)
590 _aIDE
_bIME
901 _aHaGeR
902 _aTH_02_ (271)
942 _2lcc
_n0
_cDISS
999 _c5797
_d5797