000 06219nam a2200433 4500
003 EG-NbEJU
005 20241204210605.0
008 241203b2024 ua | m||| 00| 0 eng d
040 _aEG-NbEJU
_beng
_cEG-NbEJU
_dEG-NbEJU
041 _aeng
_bara
050 _aEPE MSc. 2024 04
_b04
100 1 _aMugerwa , Geofrey ,
245 1 0 _aData - Driven Customer - Phase Relationship Identification in Low - Voltage Distribution Networks with Distributed Generations :
_bA Thesis Submitted to the Graduate School of Electronics , Communication , and Computer Engineering : Egypt-Japan University of Science and Technology (E-JUST) : In Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Power Engineering /
_cby Geofrey Mugerwa ; Supervisor Committee Prof. Sobby Abdelkader - Egypt-Japan University of Science and Technology , Prof. Maha Elsabrouty - Egypt-Japan University of Science and Technology , Dr. Tamer Megahed - Egypt-Japan University of Science and Technology , Prof. Tanemasa Asano - Kyushu University ; Examination Committee Prof. Sobby Abdelkader - E-JUST , Prof. Mohamed Abdelazim - Vice President of Mansoura University , Prof. Loay Saad Eldin Nasrat - Vice President of Aswan University for Education and Student Affairs
246 1 5 _aتحديد ارتباط العميل بالوجه باستخدام البيانات في شبكات توزيع الجهد المنخفض المتشملة على مولدات موزعة :
_bرسالة علمية مقدمة إلى المدرسة التخصصية للدراسات العليا - هندسة الإلكترونيات و الاتصالات و الحاسوب : الجامعة المصرية اليابانية للعلوم و التكنولوجيا كاستيفاء جزئي لمتطلبات الحصول على درجة ماحستير العلوم في هندسة القوى الكهربية / إعداد جيفري موجيروا ; لجنة الإشراف على الرسالة أ . د صبحي عبدالقادر , أ . د مها الصبروتي , د. تامر مجاهد , أ.د تانيماسا اسانو ; لجنة المناقشة و الحكم على الرسالة أ.د صبحي عبدالقادر , أ.د محمد عبدالعظيم محمد عبدالعظيم , أ . د . لؤي سعد الدين نصرت
260 _aAlexandria :
_bGeofrey Mugerwa
_c2024
300 _a61 leaves ;
_c30 cm
500 _aIncludes a title page in Arabic
502 _aThesis (M.Sc.)
_bMaster
_cEgypt - Japan University of Science and Technology (E-JUST) - School of Electronics , Communication , and Computer Engineering - Electrical Power Engineering Department
_d2024
520 _aPhase identification involves determining which phase each end-customer is connected to in a multi-phase distribution network Knowing the correct customer-phase connectivity provides Distribution System Operators (DSOs) with critical information for efficient operation and management of Low-Voltage Distribution Networks (LVDNs) Additionally , accurate phase connectivity information is essential for increasing the hosting capacity of Distributed Energy Resources (DERS) , which are key players in modern power systems On the other hand , incorrect customer-phase connectivity increases the risk of phase unbalance , leading to nuisance tripping of protection devices and equipment damage for assets such as transformers Usually , the phase connectivity information of a LVDN is known to DSOs at the time of planning and commissioning the power line However , due to the complexity and the various changes that occur during its operation , such as new customer connections , maintenance and repair operations , cyber attacks , emergency restoration services , etc. , the original data files maintained at the power management center often contain false connectivity information This challenge is traditionally addressed by applying hardware-based phase identification techniques Nevertheless, such approaches are costly , prone to human errors , and time - consuming, as they involve either installing expensive high-precision devices or employing field-based methods To overcome the above challenges , this thesis develops a novel data- driven method to identify the phase connectivity of end-customers using Advanced Metering Infrastructure (AMI) voltage and current measurements , collected every 15 minutes Firstly , a preprocessing method that employs linear interpolation and singular value decomposition is adopted to improve the quality of the smart meter data Secondly , using Kirchoff's current law and correlation analysis , a 0-1 linear integer programming optimization model is built to uniquely identify the phase to which each customer is connected The datasets utilized are obtained by performing power flow simulations on a modified IEEE-906 test system using OpenDSS software The robustness of the proposed identification algorithm is tested against dataset size , missing data , measurement errors , and the influence of rooftop photovoltaic generation systems To explore the benefits associated with knowing the correct phase identification information
530 _aIssued also as a digital file (for more information please check our Digital Repository)
590 _aAnD
_bACM
700 1 _aAbdelkader , Sobby ,
_eSupervisor
700 1 _aElsabrouty , Maha ,
_eco-Supervisor
700 1 _aMegahed , Tamer ,
_eco-Supervisor
700 1 _aAsano , Tanemasa ,
700 1 _aAbdelkader , Sobby ,
_eExaminator
700 1 _aAbdelazim , Mohamed ,
_eco-Examinator
700 1 _aNasrat , Loay Saad Eldin ,
_eco-Examinator
700 1 _aعبدالقادر , صبحي ,
_eمشرف
700 1 _aالصبروتي , مها ,
_eمشرف مساعد
700 1 _aمجاهد , تامر ,
_eمشرف مساعد
700 1 _aاسانو , تانيماسا ,
_eمشرف مساعد
700 1 _aعبدالقادر , صبحي ,
_eمناقش
700 1 _aعبدالعظيم , محمد عبدالعظيم محمد ,
_eمناقش مساعد
700 1 _aنصرت , لؤي سعد الدين ,
_eمناقش مساعد
901 _aHaGeR
902 _aTH_02122024_ (1)
942 _2lcc
_n0
_cDISS
999 _c7089
_d7089